NATIONAL VOCATIONAL

TRAINING INSTITUTE

TESTING DIVISION

REGULATIONS AND SYLLABUS

FOR

GENERAL ELECTRICAL

CERTIFICATE ONE

SYLLABUS FOR GENERAL ELECTRICAL GRADE CERTIFICATE ONE

A. INTRODUCTION

i. The review of this syllabus has been generally influenced by the demands of industries due to its continuous change as a result of technological advancement and the changing needs of society.

It was also influenced by the TVET reforms under the directions of the new educational reforms with the view to opening up further education and training opportunities to TVET graduates. The certificate ONE syllabus is designed to respond to the following level descriptors:

QUALIFICATION	KNOWLEDGE LEVEL	SKILLS AND ATTITUDE:
Certificate 1	1. To demonstrate a broad knowledge base incorporating some technical concepts.	1. Require a wide range of technical skills
	 To demonstrate knowledge of the theoretical basis of practical skills. 	2. Are applied in a variety of familiar and complex contexts with minimum supervision.
	 To demonstrate knowledge in numeracy, literally, IT and Entrepreneurial skills 	3. Require collaboration with others in a team

ii. The rational of this syllabus is to establish the level of knowledge and skills required by mechanics over a wide range of applications, including the development of an ability to diagnose faults, recommend by means of rectifying these faults and to test and analyze the performance of the vehicle after repairs or modification has been completed.

B. <u>OBJECTIVES</u>

The objectives of this course are to give the apprentices a systematic training both theoretically and practically. It is expected that much emphasis will be laid on the practical aspect of the training during in-school and on-the-job training. About 60% could be allocated to practical training centres and other institutions approved by the National Vocational Training Institute.

This training syllabus is prepared to serve as a guide for employers, instructors and other parties concerned with training in the preparation of their individual programmes. It is necessary that training become effectively planned and controlled as effectively as possible so that apprentices derive much benefit from their training.

C. THE COURSE COMPONENTS

Trade Theory Science and Calculation Trade Drawing General Paper Trade Practical

EXAMINATION: The candidates would be examined in the FIVE components listed in 'C' above.

Practical work must be carefully planned to illustrate application of the theory and to provide maximum opportunity for shop practice, laboratory work and demonstration.

D. KNOWLEDGE AND SKILLS REQUIREMENT

The prime objective of the programme is to provide knowledge and skills of the trade in a manner that will best meet the needs of the trade as well as industries using professional equipments

E. ENTRY TO THE COURSE

Minimum education : Must have passed JHS or SHS examination. However, the selection of the students for the course is within the discretion of the head of the institution.

F. ELIGIBILITY FOR ENTRY TO EXAMINATION

Candidates may enter for examination only as internal candidate; that is those who at the time of entry to the examination are undertaking (or) have already completed the course at an approved establishment.

G. EXTERNAL EXAMINERS

The practical work of candidates will be assessed by an external examiner appointed by the Trade Testing Commissioner.

H. EXAMINATION RESULTS AND CERTIFICATES

Each candidate will receive record of performance given the grade of performance for the components Taken. These are:

- i) Distinction
- ii) Credit
- iii) Pass
- iv) Referred/Failure

Certificates would be issued to candidates who pass in all the components.

I NOTE:

All Technical and Vocational trainees who aspire to take advantage of the opportunities opened to them in the educational reforms should NOTE that, for a trainee to progress to certificate Two (2) a pass in Certificate One (1) compulsory.

J. APPROVAL OF COURSE

Institutions or other establishments intending to prepare trainees for the Examination must apply to THE COMMISSIONER TESTING DIVISION NVTI, HEAD OFFICE P.O. BOX MB 21, ACCRA

K ACKNOWLEDGEMENT

NVTI wishes to acknowledge the preparatory material done by the team of Experts, which have been incorporated into this syllabus.

Government's desire to improve the lot of Technical/Vocational Training, which led to the preparation of this syllabus, is hereby acknowledged.

Recommended Test Books

- 1. AC/DC Principles (By Paul T. Shultz) Publishers
- 2. Electrical Wiring Residential (By: Ray C. Mullen) Publishers
- 3. Electrical Motors and Control System (By: Petruzella Publishers)
- 4. Electrical Installation and Practice
- 5. Electrical Principles and Technology (By:
- 6. The Moltivate (By
- 7. Electricity (By: Herman Publishers)
- 8. Electrical Wiring Industrial (By: Smith Publishers)
- 9. Electrical Installation Work and Practice (By:...
- 10. IEE Regulations 16th Edition

RECOMMENDED TOOLS AND EQUIPMENT

- 1. Digital/Analogue A.V.O. Meter
- 2. Voltmeter
- 3. Ammeter
- 4. Wattmeter
- 5. Megger Tester
- 6. Oscilloscope
- 7. 3-phase Induction Motor
- 8. Single phase motor
- 9. Clamp-on-ammeter
- 10. Buchanan crimping tool
- 11. Set of screw drivers (star/flat)
- 12. Combination pliers
- 13. Side cutters
- 14. Long nose pliers
- 15. Spirit level
- 16. Drilling machine
- 17. Claw hammer
- 18. Hacksaw
- 19. Wire stripper
- 20. Adjustable wrench
- 21. 1/2" E.M.T. Bender
- 22. 1/16" x ¹/₄
- 23. Electrician folding knife
- 24. Jimlet
- 25. Allen wrench set
- 26. Speed bore drill set
- 27. Steel tape measure
- 28. Tool box
- 29. Chisel
- 30. Punch
- 31. Conduit bending machine
- 32. Cordless drilling machine
- 33. Bench vice

TRADE TECHNOLOGY/REGULATION

TASK	CRITICAL POINTS	SUB - POINTS	INSTRUCTIONAL TECHNIQUES
1.0 HEALTH AND SAFETY	1.1 Applying relevant IEE Regulations 16 th Edition concerning safety of live and property	1.2.1 Cause of accident at work place.1.2.2 Methods of preventing accident including electric shock, artificial respiration.	1.3.1 Demonstrate artificial respiration
2.0 ELECTRICAL/ ELECTRONICS SYMBOLS	2.1 Identify Electrical/ Electronic Symbols	2.2 Resistors, capacitors, inductors, transformers, diodes, thyristors, triacs, etc	Assist trainees to identify electrical/electronic symbols
3.0 CABLE JOINTING AND TERMINATION	3.1 Preparing joints3.1.1 Preparingtermination of accessories.3.1.2 Preparing jointsusing soldering iron.	 3.2 A carried joints and Tee joints. 3.2.1 Cable loops. 3.2.2 Cable lugs terminating. 3.2.3 Use pot and ladle, use pliers. 	Discuss tools and equipment used in joint up and termination Show samples of insulating
	3.1.3 Identify tools and materials	phoro.	materials
4.0 TERMINATION AND JOINTING OF ARMONRED CABLE	4.1 Types of armonring cables.	4.2 Show different armoured materials	Discuss the reasons for armouring cables and apply appropriate insulation
	4.1.2 Explain the necessity for armouring a cable and state the	4.2.2 Apply appropriate insulation materials.	materials. Demonstrate how to
	application.4.1.3 Describe with aid of	4.2.3 Draw and label the constructional parts of armouring cable.	terminate armoured cable e.g. on a Baslour
	diagrams the constructional features of armoring cables.	4.2.4 Demonstrate how to join two lengths of armored cable	Brainstorm the procedure for safety
	4.1.4 Join and Terminate armored cable		Assist trainees draw and label armoured cables

TASK	CRITICAL POINTS	SUB - POINTS	INSTRUCTIONAL TECHNIOUES
5.0	5.1 Identify different	5.2.1 Copper	5.3.1. Show with a
CONDUCTORS/	types of conductor	5.2.2 Aluminum	prepared sketch of types of
INSULATORS	5.1.2 Identify insulator	5.2.3 Zinc	insulations.
	and their mechanical	5.2.4 PVC	
	protection.	5.2.5 Vulcanized Rubber	Identification with real
	5.1.3 State the	Insulation (VRI)	objects.
	advantages and		
	disadvantages of different		
	conducting materials.		
	6.1 Identify different	6.2.1 PVC, PILSWA, MICC, etc.	
	types of cables.		
		6.2.2 Using the IEE Regulations	
	6.1.2 Identify sizes of	table calculate cable size.	
	cables.		
6.0 Cables		6.2.3 List standard sizes of cables	
	6.1.3 State the current	(eg 2.5mm, 4mm, 6mm ² , 10mm,	
	rating of cables.	25mm ²).	
	6.1.4 Describe insulated and sheathed cables and	6.2.4 Flexible cable, multi-cord.	
	the use of the cord grids.	6.2.5	
		L1 – Red phase,	
	6.1.5 Colour identification	L2 – Blue phase, L3 - Yellow	
	of cables.	phase, N-Neutral Black	
		6.2.6 Single phase	
		L-Red/Brown	
		N-Blue/Black	
		E-Yellow/Green	

TASK	CRITICAL POINTS	SUB - POINTS	INSTRUCTIONAL
			TECHNIQUES
7.0 Generation of	7.1 Explain briefly the	7.2.1 Describe the generation of	
Electricity supply	generation of Electricity	AC voltage.	
	Supply.		
	7.1.2 State voltage values.	7.2.2 State the advantages of AC	
Q.Q. Maltara	Q 1 1 Identific entre larr	Over DC	
8.0 Voltage	8.1.1 Identify extra-low	8.2.1 State the values of extra low	
Classification	voltage.	voltage, low voltage, medium	
	8.1.2 Identify low voltage.	high voltage	
	8 1 3 Identify medium	ingii toitago	
	voltage.		
	8.1.4 Identify High voltage		
	8.1.5 Identify extra high		
	voltage.		
9.0 Transmission	9.1.1 Explain briefly the	9.2.1 Identify tools and equipment	
and distribution of	Transmission and	used in stinging overhead	
Electrical Energy	Distribution of Electrical	transmission and distribution	
	Energy.	cables.	
	9.1.2 State voltage values	9.2.2 Transport transmission	
		materials and erect them at site.	
		9.2.3 Describe the functions of	
		the stay wire	
		the stay whe.	
		9.2.4 Describe the procedure for	
		spanning cable between poles.	

TASK	CRITICAL POINTS	SUB - POINTS	INSTRUCTIONAL TECHNIQUES
		9.2.5 Describe the uses of	
		different types of cross arms used	
		in high tension transmission.	
10.0 Circuit	10.1.1 Identify common	10.2.1 Explain the principle of	
protective devices.	types of protective devices.	operation of the current and	
		voltage – operated earth – leakage	
	10.1.2 Explain the	circuit breaker observing relevant	
	principles and application	regulations.	
	of circuit breakers and		
	fuses in electrical	10.2.2 Select protective devices	
	installation.	(circuit breaker, fuses) for	
		single/Poly phase loads.	
	10.1.3 State the		
	regulations related to		
	various types of protective		
	devices.		

TASK	CRITICAL POINTS	SUB - POINTS	INSTRUCTIONAL
			TECHNIQUES
11.0 Testing and	11.1.1 State statutory	11.2.1 Explain the use of the Nagger (ohm meter) for testing an	
mopection	properties and the	installation.	
	environment.		
	11.1.0 Inspect to onsure	11.2.2 Show by sketch the	
	sound electrical and	meter).	
	mechanical connections of		
	an installation.		
	11.1.3 Explain polarity,		
	earthing, insulation,		
	Resistance tests		
	continuity Test of an		
	installation.		
12.0 CONDUIT	12.1.1 Describe the		
INSTALLATION	conduit system.		
	12.1.2 Identify different		
	types of conduit (eg		
	metallic and non-metallic,		
	Steel/Plastic.		
	12.1.3 State the		
	advantages and		
	disadvantages of conduit		
	in electrical installation.		
	12.1.4 Identify select and		
	maintain tools and		
	equipment used for		
	conduit systems.		

TASK	CRITICAL POINTS	SUB - POINTS	INSTRUCTIONAL TECHNIQUES
	12.1.5 State earthing in terms of bonding of metal parts.	12.2.1 Explain how to bend, set, shape, file and fabricate accessories used in connection with conduit.	12011112020
		12.2.2 Explain how to join lengths of conduit using adhesive elbows, tees and counter.	
		12.2.3 Calculate conduit sizes and apply space factor.	
		12.2.4 List and explain the use of stock, tap and dies, hacksaw, etc.	
		12.2.5 Describe how the cables are drawn unto a conduit using fish tape or draw wire.	
13.0 EFFECT OF ELECTRIC CURRENT	13.1.1 Describe the heating effect of electric current.	13.2.1 Describe types of thermostats and their effects.	
	13.1.2 Describe the Magnetic effect of electric	13.2.2 Give application of each thermostat in 13.2.2.	
	current.	13.2.3 Explain electromagnetism.	
	13.1.3 Describe the chemical effect of electric current.	13.2.4 Explain the use of the electrolyte	

TASK	CRITICAL POINTS	SUB - POINTS	INSTRUCTIONAL
14.0 LIGHTING	 14.1.1 State the principle and construction of the fluorescent lamps. 14.1.2 State the principle and construction of the incandescent (Filament) lamps. 	 14.2.1 Explain the stroboscopic effect and how to minimize it. 14.2.2 Describe by using sketches the incandescent lamp and the Fluorescent lamp. 14.2.3 Explain cosine and inderse square laws, Brightness and photometer. 14.2.4 Apply lumen formula 	TECHNIQUES
15.0 AC AND DC MACHINES	 15.1.1 Identify types of DC Motors and Generators. 15.1.2 Explain the principles of operation of a DC Machine. 15.1.3 Describe the construction features of DC Machine . 15.1.4 Identify types of AC Motors (single and three phase) 15.1.5 Describe the constructional features of AC Machines. 	 L = <u>E x A</u> Q x CU x MF 15.2.1 State the application of DC Machines. 15.2.2 State the application of each of the motors in 15.2.2. 15.2.3 Explain the use of multi- meter for testing open and short circuits on motor windings. 	

TASK	CRITICAL SKILLS	SUB - SKILLS	INSTRUCTIONAL TECHNIQUES
16.0 PHASE DISTRIBUTION	16.1.1 State the purpose of the following:TPNFUSE BOARDISOLATORDOL STARTER	 16.2.1 With the aid of a BLOCK LETTERS show the sequence of 3 phase supply system (Balance load). 16.2.2 Connect 3 phase supply from the TPN fuse board, Isolator and to a DOL Starter. 	

PRINCIPLES

			INSTRUCTIONAL
TASK	CRITICAL SKILLS	SUB - SKILLS	TECHNIQUES
		1.2.1 Matter	
1.0 STRUCTURE		1.2.2 Molecule	
OF MATTER	1.1 Define the following	1.2.3 Atom	
	terms	1.2.4 Electrons	
2.0 METHOD OF	2.1 Description of basic	2.2.1 Hydro	
GENERAL	methods of generating	2.2.2 Thermal	
ELECTRICITY	electricity.	2.2.3 Solar	
3.0 EFFECT OF	3.1 Description of the effect	3.2.1 Heating	
ELECTRIC	of electric current	3.2.2 Chemical	
CURRENT		3.2.3 Magnetic	
		4.2.1 Mathematical derivation	
		4.2.2 V/R = I, V = IR	
4.0 OHM'S LAW	4.1.1 State Ohm's Law	4.2.3 Determine current in series	
	4.1.2 Application of Ohm's	and parallel cut.	
	law.	4.2.4 Determine Power Consumed by	
		circuit.	
		5.1.1.1 Definition	
		5.1.1.2 Types	
		5.1.1.3 Application	
5.0 MAGNETISM	5.1.1 Description of	5.1.2.1 Uses	
	Magnetism	5.1.2.2 State laws	
	5.1.2 Magnetic lints of force.	5.1.3.1 State the laws	
	5.1.3 The law of magnetism	5.1.4.1 Ferrous and Non Ferrous	
	5.1.4 Magnetic materials	5.1.5.1 Define terms	
	5.1.5 Magnetic circuit terms	5.1.5.2 State unit of magnetism	
	5.1.6 Electromagnet	5.1.6.1 Define	
		5.1.6.2 Uses	
		5.1.6.3 Force on conductor in a	
		magnetic field.	

			INSTRUCTIONAL
TASK	CRITICAL SKILLS	SUB - SKILLS	TECHNIQUES
6.0 PRIMARY AND SECONDARY CELLS	6.1.1 Description of Primary and Secondary Cells.	6.1.1.1 Define Primary Cells.6.1.1.2 Define Secondary Cells.6.1.1.3 Differentiate betweenPrimary and Secondary Cellsconstruction	
	6.1.2 Calculation involving cells connected in series and parallel.	6.1.2.1 Calculate cells in series6.1.2.2 Calculate cells in parallel6.1.2.3 Calculate internal resistance of cells	
	6.1.3 Description of method of charging Batteries	6.1.3.1 Show by sketch how batteries are charged.	
	7.1 Application of capacitors.	7.1.1 Definition.7.1.2 Describe construction7.1.3 Types and uses.	
	7.2 Calculation of capacitance valve	7.2.1 Identify series and parallel circuits. 7.2.2 Calculate equivalent value of each connection. 7.2.3 Show that $CT = \frac{C_1 + C_2}{C_1 + C_2}$ series connection and $CT = C_1 + C_2$ for parallel connection.	

			INSTRUCTIONAL
TASK	CRITICAL SKILLS	SUB - SKILLS	TECHNIQUES
8.0	8.1 Describe generation of alternating current.	8.1.1 Define alternating current.8.1.2 Explain periodic time, maximum value, sinusoidal wave form generator, frequency.	
OF ROOT MEAN SQUARE AND AVERAGE VALUES OF ALTERNATING CURRENT.	8.2 Calculation of root mean square values	 8.2.1 Use sketch (graphical) to determine root mean square values. 8.2.2 Use alternative way that is Calculate Irms = Max Value x 0.707 for sinusoidal wave only. 	
	8.3 Calculation of Average value.	8.3.1 Use sketch (graphical) to determine Average Value.	
		 8.3.2 Use alternate way to calculate I(av) = Max value x 0.632 for sinusoidal wave only. 8.3.3 Explain why most. 8.3.4 Measuring instrument measure root mean square (rms) and not average values. 8.3.5 Use graph to determine rms and Average values of Alternating current. 	

TASK		CIID CVILLS	INSTRUCTIONAL
IASK	CRITICAL SKILLS	SUB - SKILLS	IECHNIQUES
	9.1 Describe principles of		
	construction of measuring	9.1.1 Define electrical measuring	
	instruments.	instrument – Analogue type/digital	
		9.1.2 List types	
		9.1.3 Label parts of instruments	
		9.1.4 Explain construction the	
		iollowing instrument	
9.0 ELECIRICAL		a) Moving Lion	
MEASURING		b) Moving from	
		d) Dynamometer	
		a) Magger (Ohm meter)	
	9.2 Describe the principle of	c) Megger (Omm meter)	
	operation of instrument	9.2.1 Explain the principle of	
	operation of moti differit	operation of 9.1.3	
	9.3 Read scales on		
	instrument both digital and	9.3.1 Compare scale of ohm meter	
	analogue.	and Ammeter or Voltmeter	
		9.3.2 Read values being measured	
		9.3.3 Compare Analogue and Digital reading of the same quantity being measured.	

			INSTRUCTIONAL
TASK	CRITICAL SKILLS	SUB - SKILLS	TECHNIQUES
10.0	10.1 Describe Transformers	10.1.1 Define Transformer	
TRANSFORMERS		10.1.2 List types	
		10.1.3 List parts	
		10.1.4 Deduce transformation Ratio.	
		10.2.1 Explain method of	
	10.2 Describe transformer	construction.	
		10.3.1 Use sketches to explain the	
	10.3 Describe principle of	principle of operation.	
	operation.	10.3.2 Sketch phase diagram for	
		transformer on no load and on load.	
11.0 RESISTIVITY	11.1 Describe resistivity of	11.1.1 Define resistivity of conduct.	
		11.1.2 List conductors used in the	
		electrical industry and resistivities.	
		11.1.3 Explain the relationship	
		R=SL/a and define each term	
		and unit.	
		11.1.4 Solve more problem using the above formula	

			INSTRUCTIONAL
TASK	CRITICAL SKILLS	SUB - SKILLS	TECHNIQUES
12.0 EFFECT OF	12.1 Describe the effect of	12.1.1 Define temperature and	
TEMPERATURE	temperature change on	temperature change.	
CHANGE ON A	conductors.		
MATERIALS eg		12.1.2 Define temperature. Co-	
COOPER,		efficient of Resistance for each	
ALUMINIUM, ETC.		material (ie Cooper, Aluminium,	
		Carbon, Gold, etc	
		10.1.2 Use graph to evenlain the	
		12.1.5 Use graph to explain the	
		increases Resistance increase	
		R1 = R0 (1 + x R2) Define each term	
		12.4 Solve more problem.	
13.0 HEAT	13.1 Describe Heat	13.1.1 Define heat	
		13.1.2 List method of heat	
		production.	
	13.2 Describe method of	13.2.1 List 3 methods of heat	
14.0	14.1 Europein Illumination	14.1.1 Define Illumination lumon	
14.0	14.1 Explain mullimation.	14.1.1 Define munimation, fumeri,	
ILLOWINATION		law	
		law.	
	14.2 Explain the	14.2.1 Explain measurement using	
	measurement of	flux meter.	
	Illumination.		

			INSTRUCTIONAL
TASK	CRITICAL SKILLS	SUB - SKILLS	TECHNIQUES
15.0 IDENTIFYING	15.1 Describe materials	15.1.1 Define the following materials:	
MATERIALS	used in Electrical works.	Conductor, Insulator and Semi-	
(CONDUCTORS,	Conductors, Insulators and	conductor.	
INSULATORS AND	Semi-conductors.		
SEMI-		15.1.2 List the properties	
CONDUCTORS)			
		15.2.1 State the application of	
	15.2 Application of	materials i) Conductors ii) Insulators	
	Materials.	and iii) Semi-conductors.	
16.0	16.1 Describe alternating	16.1.1 Define AC circuits	
ALTERNATING	current (A.C) circuits.		
CURRENT		16.2.1 Explain the following terms:	
CIRCUITS		Reactance, Impedance Phasor	
	16.2 A.C. circuits terms.	diagram, Current triangle, Voltage	
		Triangle, Impedance triangle and	
	16.2. Salva series and	Power triangle.	
	10.3 Solve series and	16.2.1 Determine for the sector	
	parallel circuits.	i) Inductive resetores	
	16 4 Eurolein Demon Fester	i) Inductive reactance.	
	improvement	ii) Capacitor Reactance.	
	miprovement.	in) inipedance	
		v) Phase defense	
		v) Fliase deletise	
		16.4.1 Use sketches to explain the	
		following P.F. correction.	

			INSTRUCTIONAL
TASK	CRITICAL SKILLS	SUB - SKILLS	TECHNIQUES
17.0.1	17.1 Describe electronic components.	17.1.1 Identify components.	
ELECTRONICS		17.1.2 List components, resistor LED, LDRs, diodes, transistors,	
		thyristors, triacs and transformers.	
		17.1.3 Draw symbols listed	
		17.1.4 Determine characteristics of semi-conductor diodes. Zener diode.	
17.0.2 OPERATION OF	17.2 Describe principle of operation of components	17.2.1 State functions or principles of operation of device mentioned in	
COMPONENTS		17.2.2 Show how it is tested using	
		circuit diagrams.	
17.0.3 RECTIFICATION	17.3 Describe the half wave, 2 diode centre tap Full wave	17.3.1 Define Rectification.	
	and 4 diode full wave	17.3.2 Draw and explain the circuit diagram for $\frac{1}{2}$ wave and full wave	
	rectification.	rectification.	
		17.3.3 Use of the thermionic value for $\frac{1}{2}$ wave and full wave rectification.	

TASK	CRITICAL SKILLS	SUB - SKILLS	INSTRUCTIONAL TECHNIQUES
17.0.4 POWER SUPPLY SYSTEMS	17.4 Determine constant Power Supply System.	17.4.1 Define Power Supply System.17.4.2 Apply filtering circuits to rectified current.	
		17.4.3 Apply zener diode as voltage stabilizer.17.4.4 Draw block ding of Power Supply System.	

CERTIFICATE ONE – TRADE PRACTICALS

TASK	CRITICAL SKILLS	SUB - SKILLS	INSTRUCTIONAL GUIDE	EVALUATION
1.0	1.1 Demonstrate safety	1.1.1 Identify rules and	- Present rules and	- Write 5 rule and
Workshop	workshop practices.	regulation used in the	regulation on safety to	regulations on
Practice		workshop.	trainees. Write 5 rule	safety.
			and regulations on	
		1.1.2 Explain safety	safety.	
		rules and regulations.	- Demonstrate safety	- How will you
			rules. How will you avoid	avoid accident in
			accident in the	the workshop.
			workshop.	
	1.2 Describe various	1.2.1 Draw hand tools	- Trainees should put on	
	parts of a hand tools	label parts.	protective gear during	
	(eg. Hacksaw) and their	1.2.2 Indicate how tools	workshop practices.	
	functions.	are used.		- Draw the Hacksaw
			- Present tools to	and label its parts
			trainees for examination	and list its uses.
	1.3 Identify tools and		and identification. Draw	
	materials related to	1.3.1 Name tools	the Hacksaw and label	
	tasks (eg. Jointing)	required for eg.	its parts and list its uses.	
		Stripping, jointing, etc.		- List tools used for
	1.4 Demonstrate			a) jointing
	method of handling	1.4.1 Demonstrate how		b) stripping, etc
	tools and Power tools.	tool is used to trainees.	- List tools and its uses	
			for various jobs.	
	1.5 Demonstrate the			- Drill a hole
	use of ladder.	1.5.1 Draw the ladder		13mm dia.
		and label.	- Trainees handle tools	
		1.5.2 State types of	whiles Teacher observe	
		ladder.	and correct.	- Climb ladder and
		1.5.3 Demonstrate the		remove lamp.
		work.	- Trainees use ladder as	
			snown	

2.0	2.1 Demonstrate	2.1.1 Write steps of	- Instruct trainees to	- Terminate
Preparing	method of preparing	termination for	terminate into	2.5mm ² PVC
terminations	Termination for	memory.	accessories	Insulated Cable
	accessories	2.1.2 Prepare		
		termination for		
		accessories		

CERTIFICATE ONE TRADE SCIENEC AND CALCULATION

NO	TASK	CRITICAL - POINTS	SUB-POINTS	INSTRUCTIONAL TECHNIQUES
1.0	INTRODUCTION TO ELECTRICITY	Trainee should be able to: 1.1 Explain the structure of an atom i. Matter ii. Molecule iii. Atom	Explanation <u>Matter</u> : Any material which has weight and can occupy space <u>Molecule</u> : The smallest divisible particle of chemical compound <u>Atom</u> : The smallest particle of a matter	Discuss or brainstorm with the aid of diagrams the structure of an atom to trainees.
		1.2 Define the above mentioned structures and state the three states of a matter.i. Solid stateii. Liquid stateiii. Gas state	 <u>Solid state</u>: Matter is said to be in solid state when it has fixed shape and fixed size. E.g. stone, table, book and pen. <u>Liquid state</u>: When it has a fixed size but do not have any fixed or definite shape. It takes the shape of the container into which is put. Gas state: When it has no fixed size or fixed shape. It also takes up the shape of ifs container into which it put. E.g. vapour, air, oxygen. 	Discuss with the trainees the flow of both gas and liquid as compare to solid. State of a matter

TRADE SCIENEC AND CALCULATION

NO	SKILLS	CRITICAL - POINTS	SUB-POINTS	INSTRUCTIONAL
				TECHNIQUES
		1.3 Describe the rate of flow of electrons.	The measure of quantity of electrons passing through a conductor per second.	Discuss the rate of flow of electrons with the aid of diagram
		1.4 Explain the convectional and electron flow of current in a circuit.	Electron flow from the negative point to the positive point in a circuit, but current flows from the positive end to the negative end in a circuit	Explain the convectional and electrons flow of current in a circuit with the aid of a diagram with the trainees in groups.
		 1.5. List and explain the different types of: i. Conductors ii. Insulators iii. Semi conductors 	the uses of the following: a) Aluminium b) Carbon c) Brass d) Nichrome e) Tungsten f) Silver	Discuss and explain the functions and uses of various types of conductors with the aid of a real object.
			 Insulation: Define and explain the uses of the following: a) P.V.C. b) Rubber c) Magnesium oxide d) Mica e) Bakelite f) Ceramic g) Porcelain h) Asbestos 	Discuss and explain the functions and the uses of the various types of insulators with the aid of a real object to the trainees

TRADE SCIENCE AND CALCULATION

				INSTRUCTIONAL
NO	TASKS	CRITICAL - POINTS	SUB-POINTS	TECHNIQUES
NO	IASKS	CRITICAL - POINTS	Sob-POINTS Semi Conductors <u>Germanium</u> : Manufacture of electronics component. <u>Silicon</u> : Manufacture of electronics component. E.g. diode transistors. <u>Description</u> : The flow of current through a coil set up magnetic flux applications: Ball, motor Generator (Magnetic effect). Heating effect: The flow of	Explain to the trainees the basic functions of diodes Explain with the aid of diagram the effect of magnetic. Explain to the trainees the functions
			current through a wire causes it to become red hot. Chemical effect: The flow of current through chemical solution causes chemical changes to take place. Application: Electroplanting	of an electric iron. Discuss with the trainees the effect of connecting a d.c. source to (spoon) to be electroplate place in a plastic container of a chemical solution.
2.0.	D.C. CIRCUIT	 Trainees should be able to: 2.1. State the Ohm's law. 2.2. Solve problems involving resistors connected in series 	Define the Ohm's law with respect to temperature and relationship between the voltage, current and resistance. In a series circuit, the total resistance is always greater than the largest individual resistor in the circuit: RT= R1+R2+R3	Discuss Ohm's law with trainees.

NO	SKILLS	CRITICAL - POINTS	SUB-POINTS	INSTRUCTIONAL TECHNIQUES
		2.3 Solve problems involving resistors connected in parallel	Resistance are connected in parallel when same voltage is across them. The effective resistance RT is calculated from the equation. $\frac{1}{RT}$ $\frac{1}{R1}$ + $\frac{1}{R2}$ $\frac{1}{R3}$	
			$RT = \frac{R1 + R2}{R1 + R2} for two resistance \\ \frac{R1 + R2}{R1 + R2} Connected in \\ parallel$	
		2.4 Calculate the sum of the voltage drops in series circuit.	In series circuit the sum of the individual voltage drops is equal to the applied voltage. VT = V1 + V2 + V3	Solve problems involving resistors connected in series and their voltage drops.
		2.5 Calculate the sum of the individual current in parallel circuit.	In a parallel circuit the sum of the individual current in the branch circuit are equal to the total current of the circuit.	Explain the method of calculating the total current in a parallel circuit to trainees.
		2.6 Calculate by Ohm's law resistance, current and voltage ina) Series circuit	The formular to use is I = V/R Where V= Applied voltage (Volts) I= Current (A)(amp) R = Resistance (ohm) ~	Explain how to calculate for current resistance and voltage using Ohms law to trainees

CERTIFICATE ONE - TRADE SCIENEC AND CALCULATION

CERTIFICATE ONE - TRADE SCIENEC AND CALCULATION

NO	SKILLS	CRITICAL - POINTS	SUB-POINTS	INSTRUCTIONAL
				TECHNIQUES
		2.7 Solve problems involving	Define power and energy and solve	Explain how to
		power and energy.	problems involving power by using	calculate for power
			$P = I^2 R (w)$	and energy in a
			P=VxI	circuit to trainees
			$P=V^2/R$	
			Where P = Power in watts	
			I = Current	
			R = Resistance	
			V = Voltage	
			To calculate for energy is	
			$E = P \times T$	
			Where E = Energy	
			P = Power	
			T = Time (sec)	
			Unit of energy is joules	
			Define electrical charge per second.	
		2.8Quantity of electrical charges	Solve problems involving electrical	Solve problems
		(Q)	charge by using the formular $Q = I x$	involving resistivity of
			t	a materials in Ohm's
			I = current	by using the formular
			T = time (sec)	R = PL/A
		2.9 Resistivity of a material or	Define	
		conductor	Provide the table or chart for	
			resistivity of conductors	
			Use the formular $R = PL/A$	
			Where R = Resistance	
			P = Resistivity of conductor	
			L = Length	
			A = Cross-sectional Area	

TRADE CERTIFICATE - TRADE SCIENECE AND CALCULATION

NO	SKILLS	CRITICAL - POINTS	SUB-POINTS	INSTRUCTIONAL
				TECHNIQUES
		2.10 Temperature co-efficient of	Define temperature co-efficient of	Solve problems involving
		a resistance.	a material.	temperatures increasing
			Solve problems by using the	from zero degree Celsius
			formular: $Rt = RO(1+\sigma t) = for$	and two given
			temperature increase from zero	intermediate
			degree celsius and	temperatures with the
			$RI = \frac{1 + \alpha tI}{1 + \alpha tO}$	trainees.
			R2 1+& t2 for temperature	
			tomporoturos	
			temperatures.	
3.0	MAGNETISM	Trainees should be able to:	Explanation:	Discuss with the trainees
0.0	MINGINETION	3 1 a) Define a magnet	Types of magnet: Natural	with the aid of a real
		b) Identify types of magnet	Permanent	object the ferrous
		c) List the type of magnet	Temporal	materials and non ferrous
		d) State the law of magnetism	Law of magnetism: Like pole	materials.
		e) Define line of force	unlike poles attracts repels	
		f) Differentiate between ferrous		Explain the principles of
		and non ferrous materials and	Ferrous materials: Can be	attractions and repulsion
		state the unit of magnetism	attracted	
			Non ferrous: Cannot be attracted	
		3.2 State magnetic units and	Magnetic flux (Symbol Ø). The	Brainstorm trainees with
		their uses	unit of magnetic flux is weber (wb)	the magnetic units and
			and may be taken as equal to one	symbols
			line of force. Sub-units = (mwb)	

CERTIFICATE ONE - TRADE SCIENECE AND CALCULATION

NO	SKILLS	CRITICAL - POINTS	SUB-POINTS	INSTRUCTIONAL TECHNIQUES
			Flux density (B): Flux density is measured in tesla (T) The flux density is a measure of the field strength since it indicated the density of the field.	Solve problems involving magnetic by using the formular.
			Magnetic motive force (F) mmf. It's the force which cause the magnetic flux to be established in coil. = Number of turns x current in the coil	
			Magnetism force (H). It is the mmf per unit length of the magnetic circuit. $\frac{F(NI)}{H=L}$	
		3.3. Solve problems on force on a conductor place in a magnetic field.	Problem solving use the formular BLI to solve problems. Where: B = Flux density I = Current L = Length of conduct NB: Force (N) Newton	Discuss the process to solve problems with trainees
4.0	ELECTRO MAGNETISM	4.1. Trainees should be able to: Understand the basic principles of a solenoid. Identify the magnetic field around conduction due to a current flowing through it.	Solenoid showing direction of current flux pattern. A loop of wire showing the direction of current flux pattern	Brainstorm trainees about the shape of the field and the direction of current in the loop.

CERTIFICATE ONE - TRADE SCIENECE AND CALCULATION

NO	SKILLS	CRITICAL - POINTS	SUB-POINTS	INSTRUCTIONAL
				TECHNIQUES
		4.2 State the application of electromagnetic devices.4.3 Define electromagnetic induction	Application: Bell, relay, motor, contractor and generator.	Discuss the application of bell, relay, motor and generator.
		muution	Definition: When there is a change of current through a coil it causes a magnetic field to set up an induced e.m.f. is established in itself or in another.	Discuss the magnetic field and induced e.m.f. on both self and mutual inductance.
5.0	BATTERIES OR CELL'S	5.1 Define battery cell and list types of primary and secondary cells.5.2. Describe methods of charging battery basically	Solve problems involving primary cells connected in series and parallel with their internal resistance	Fundain the method to
			method and current method	trainees with the aid of diagram.
6.0	ELECTROSTATISC	 Trainee should be able to: Define capacitor Identify types of capacitors List types of capacitors Describe types of capacitors State the applications Solve problems involving capacitor connected in series and parallel in a circuit 	Definition of the following: • Capacitor • Capacitance • Farad Identify types of capacitors: Paper, mica, electrolytic. Perform calculations involving capacitor connected in series and parallel by using the formular Series: $CT = I + I + I$ I C2 C2 C3 Parallel: CT = C1 + C2 + C3	Solve problems with trainees on both series and parallel connected capacitors in a.c. circuit.

CERTIFICATE ONE -	TRADE SCIENCE	AND CALCULATION
--------------------------	----------------------	-----------------

NO	SKILLS	CRITICAL - POINTS	SUB-POINTS	INSTRUCTIONAL TECHNIQUES
7.0	TRANSFORMERS	7.1 Trainees should be able to:i. Define transformerii. Identify types of transformersiii. Explain the construction and operation of transformeriv. List types of transformers	 a) Definitions of a transformer Types of transformers Core and shell type b) Construction operation of Double wound Auto transformer 	Discuss the types and the principles of a diagram to trainees.
			c) Perform calculations involving transformer ration by using the formular: $\frac{Vp}{VS} = \frac{Np}{Is} = \frac{Is}{Ip}$	Solve problems involving transformer ration with respect to the primary and secondary voltage and current
8.0	MEASURING INSTRUMENT	Trainees should be able to: 8.1 Describe basic parts of measuring instruments. i.e. a) Moving coil b) Moving iron 8.2 Define measuring instrument 8.3 Basic construction and principles of measuring 8.4 Solve problems on extension of range using shunt or multiplier	Description: <u>Operating device</u> : Is usually an electron magnet formed by current in a coil. Controlling devices: Two types a) Gravity control b) Spring control Damping devices: Two types a) Oil dashpot damping and b) Eddy current damping Use the formular to solve problems on instrument	Explain with the aid of diagram the coil and the iron types of measuring instrument. Solve basic problems on extension of range on measuring instrument.

CERTIFICATE ONE - TRADE SCIENCE AND CALCULATION

NO	SKILLS	CRITICAL - POINTS	SUB-POINTS	INSTRUCTIONAL TECHNIQUES
9.0	ILLUMINATION	 Trainees should be able to i. Define the following: lumen luminous intensity inverse square-law 	Solve problems involving illumination when the distance from light point and the floor area is given by using inverse square law	More calculations on inverse square law.
10.0	VOLTAGE DROP ON CABLE SIZES	Trainees should be able to: Define voltage drop in cable Solve problems involving voltage drop in a cable by using the formular	Definitions of voltage drop and cable size. Simple calculations on voltage drop in a cable by using Vrd = <u>Mv/A/M x L x I</u> 1000	Define the voltage drop and solve simple problems involving voltage drop
11.0	SINGLE PHASE MOTORS	 Trainees should be able to: i. Define single phase motor ii. Identify types of single phase motors iii. List types and applications iv. Describe the construction and operations 	Definition of single phase motor Identify the parts a) rotor b) stator c) end bearing d) shield e) windings f) centrifugal switch	Explain the basic construction and operation of a single phase motor with the aid of diagram. Discuss or solve simple calculation on single phase motors.

CERTIFICATE ONE – TRADE DRAWING

NB: Instructors must draw and explain to trainees using colour chalks on chalk board.

- 1. Draw the B.S. specification electrical symbols on accessories and devices.
- 2. Draw and label all parts of M.I.C.C. and P.I.L.S.W.A armoured cables
- 3. Draw a wiring diagram of simple lighting circuit using symbols and geographical symbols
- 4. Layout diagram for simple lighting circuit using 2-way switches and intermediates
- 5. PLAN drawing of simple lighting circuits, using symbols.
- 6. Single line diagrams on lighting circuit, using symbols
- 7. Sequence of supply equipment control showing internal connections
- 8. Sequence of supply equipment control using block diagram
- 9. Draw a complete wiring diagram of ring main circuit using 4 socket outlets with one spur
- 10. Draw a complete wiring diagram of radial circuit using 4 socket outlet
- 11. Draw a complete wiring diagram of a single fluorescent lamp circuit controlling from THREE different point.
- 12. Drawing of the internal connections of both S.P.N and T.P.N. main switches
- 13. Draw a complete circuit diagram of electric bells e.g. single stroke, trembler bell

- 14. Draw a complete circuit diagram to show how to test for the following:
 - Polarity test
 - Insulation resistance
- 15. Draw a circuit diagram of bridge rectification system. Using four diodes
- 16. Drawing of distribution board showing internal connections
- 17. Draw a labeled all parts of various types of single-phase motors.

TRADE THEORY (OBJECTIVE)

		COGNITIVE	AFFECTIVE	PSYCHOMOTOR	
NO	TOPIC	KNOWLEDGE	UNDERSTANDING	APPLICATION	TOTAL
1.	Health and safety	_	1	1	2
2.	Electrical symbol	-	2	1	3
3.	Cable joints	-	1	-	1
4.	Conductor and insulators	-	2	1	3
5.	Cables		1	-	1
б.	Generation of electrical	1	1	-	2
7.	Voltage classification		1	1	2
8.	Transmission and distribution	1	1	1	3
9.	Protective devices		1	1	2
10.	Testing and inspection	1	_	1	2
11.	Conduit installation	-	1	-	1
12.	Lighting	1	1	-	2
13.	A.C. and D.C. machine	1	1	-	2
14.	Single Phase dist	-	1	1	2
15.	Single phase distribution	1	1	1	3
					31

TRADE THEORY (SUBJECTIVE)

		COGNITIVE	AFFECTIVE	PSYCHOMOTOR	
NO	TOPIC	KNOWLEDGE	UNDERSTANDING	APPLICATION	TOTAL
1.	Health and safety	1	-	1	2
2.	Electrical symbol	-	1	-	1
3.	Cable joints	-	1	1	2
4.	Conductor and insulators	1	1	1	3
5.	Cables	-	2	2	4
6.	Generation of electrical	-	1	1	2
7.	Voltage classification	-	1	1	2
8.	Transmission and distribution	1	1	-	2
9.	Protective devices	1	2	1	4
10.	Testing and inspection	-	2	1	3
11.	Conduit installation	-	1	1	2
12.	Lighting	-	2	1	3
13.	A.C. and D.C. machine	1	1	1	3
14.	Single Phase dist	1	1	-	2
15.	Single phase distribution	-	2	2	4
					39

TRADE SCIENCE AND CALCULATIONS

		COGNITIVE	AFFECTIVE	PSYCHOMOTOR	
NO	TOPIC	KNOWLEDGE	UNDERSTANDING	APPLICATION	TOTAL
1.	Introduction of Electric	1	1	1	3
2.	D.C. circuit	1	2	1	4
3.	Magnetism	-	2	2	4
4.	Electromagnetism	-	2	2	4
5.	Electrostatics	-	1	1	2
6.	Transformers	1	1	1	3
7.	Measuring instrument	-	1	1	2
8.	Illumination	-	1	1	2
9.	Voltage drop on cable	-	1	1	2
10.	Single phase motors	1	1	2	4
					30

TRADE PRACTICALS

		COGNITIVE	AFFECTIVE	PSYCHOMOTOR	
NO	TOPIC	KNOWLEDGE	UNDERSTANDING	APPLICATION	TOTAL
1.	Workshop practice	1	1	1	3
2.	Termination	1	2	1	4
3.	Cable jointing	-	1	1	2
4.	Wiring on boards	1	2	1	4
5.	Conduit and trunking	1	2	1	4
6.	Earthing arrangement	1	1	1	3
7.	Bell circuit	1	2	1	4
8.	Testing instrument	-	1	1	2
9.	Testing installation	-	1	1	2
10.	Domestic appliance	1	1	-	2
11.	Testing board	-	1	1	2
12.	Cooker unit	1	-	1	2
13.	Discharge lights	1	1	1	3
14.	Single phase motor	-	2	1	3
15.	3-phase motors	-	1	2	3
16.	3-phase distribution	1	1	1	3
					46

TRADE PRACTICALS

		COGNITIVE	AFFECTIVE	PSYCHOMOTOR	
NO	TOPIC	KNOWLEDGE	UNDERSTANDING	APPLICATION	TOTAL
1.	B.S. Electrical symbols	-	2	-	2
2.	Cable	-	1	1	2
3.	Lighting layout	1	2	1	4
4.	Lighting plan	1	1	2	4
5.	Single line diagram	-	2	1	3
6.	Supply control arrangement	1	1	2	4
7.	Block diagram	-	1	-	1
8.	Ring circuit	-	1	-	1
9.	Radial circuit	-	1	-	1
10.	2-way switching	1	2	1	4
11.	Intermediate switching	1	2	1	4
12.	Fluorescent CCT	1	1	1	3
13.	S.P.N. Drawing	-	1	1	2
14.	T.P.N Drawing	1	1	-	2
15.	Polarity test drawing	-	1	-	1
16.	Insulation resistance test		1	2	3
17.	Single phase motor		2	-	2
18.	D.B. Drawing	1	_	1	2